
A

s
i
r
(
a
©

K

1

n
n
s
g
p
b
r
a

d
a
r
w
a
a
i

0
d

Available online at www.sciencedirect.com

Sensors and Actuators A 142 (2008) 352–360

Smart sensor architecture for mobile-terminal-centric
ambient intelligence

Iiro Jantunen a,∗, Hannu Laine a, Pertti Huuskonen b, Dirk Trossen a, Vladimir Ermolov a

a Nokia Research Center, Helsinki, Finland
b Nokia Research Center, Tampere, Finland

Received 30 September 2006; received in revised form 2 February 2007; accepted 10 April 2007
Available online 19 April 2007

bstract

This study is about developing an open architecture platform for implementing mobile-phone-centric ambient intelligence. In the proposed
ensor network architecture, a mobile phone acts as a central node hosting applications and connecting a local sensor network to back-end servers
n the internet. The architecture includes a context awareness layer that abstracts sensor measurements into context atoms through rule-based

easoning and notifies changes in atoms to local and remote applications. The technologies used in the architecture include Simple Sensor Interface
SSI) protocol, nanoIP and low-power short-range radios. The architecture has been implemented and successfully demonstrated using several
pplications with a commercially available mobile phone with add-on electronics.

2007 Elsevier B.V. All rights reserved.

xt aw

s
i
t
s

a
n
c
n
e
h

o
i
r
l

eywords: Smart sensor architecture; Wireless sensors; Remote sensing; Conte

. Introduction

Various architectures have been developed for wireless sensor
etworks. These architectures usually are ad-hoc peer-to-peer
etworks requiring computational and networking capacity on
ensor nodes [1]. To simplify development of ambient intelli-
ence services, we use a star architecture, in which a mobile
hone acts as the trusted user interface device, providing
oth local network and internet connections and capability to
un application software to provide functionality, e.g., context
wareness (see Fig. 1) [2].

Compared to other candidates for a user-carried interface
evice (laptop computers or PDAs), mobile phones have several
dvantages: highest penetration and acceptance amongst users,
elatively low cost and small size, both local and long range
ireless connections from everywhere to everywhere, access to
wide range of services via internet, data storage possibility
nd local computational capacity, and that no additional user
nterfaces need to be carried by the user.

∗ Corresponding author. Tel.: +358 504868699; fax: +358 718063214.
E-mail address: iiro.jantunen@nokia.com (I. Jantunen).

a

w
t

t
l

924-4247/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
oi:10.1016/j.sna.2007.04.014
areness

In our architecture, the mobile phone searches and reads
ensors, stores and analyzes sensor values to extract context
nformation, hosts sensor network applications and forwards
he appropriate data to servers in the internet to provide extra
ervices and functionality.

The architecture requirements are openness, modularity, scal-
bility and energy efficiency. Openness and modularity are
eeded to enable creation of novel ambient intelligence appli-
ations and services by different industry players. Scalability is
eeded to enable development of vertical applications of differ-
nt scale on different application areas (e.g., well-being, health,
ome automation).

As wireless sensors should be small and not require changing
r charging batteries often, low energy use is a key parameter
n developing sensor networks. Networking, both protocols and
adio interface, should be as low consumption as possible. Also
ow price is of prime importance to allow widespread use of the
rchitecture.

This architecture has been developed in the EU 6th frame-
ork integrated project MIMOSA. The architecture is referred
o as MIMOSA architecture in this paper.
This paper is organized so that in Chapter 2, we introduce

he key components of the architecture along with software
ayers. Chapter 3 describes how the architecture has been imple-

mailto:iiro.jantunen@nokia.com
dx.doi.org/10.1016/j.sna.2007.04.014


I. Jantunen et al. / Sensors and Actuators A 142 (2008) 352–360 353

centra

m
t
p

2

f
e
T
o
w
f

e
s
e

b
c
B
p

i
o
p
w
a

p
B

d
c
(
w
w
b
c
f
t
low-power radio technology designed for sensors, e.g., ZigBee
[5].

To simplify the terminal by removing the need of yet another
radio front-end, the ISO 18000-4 RFID was chosen as it works
Fig. 1. Mobile phone as the

ented to demonstrate its functionality. In Chapter 4, results of
he demonstrations are presented and Chapter 5 concludes the
aper.

. MIMOSA architecture

The MIMOSA architecture is designed to be modular and
reely scalable. The software architecture is based on three lay-
rs: Context Layer, Sensor Layer, and Local Connectivity Layer.
he application programming interfaces (API) of the layers are
pen for 3rd parties. These layers, and remote sensing middle-
are, will be presented in the following sections. Open interfaces

or 3rd party sensor hardware are also provided.
The MIMOSA architecture (see Fig. 2) defines four types of

ntities: terminal devices (mobile phones) with built-in sensors,
ensor radio nodes, wireless remote-powered sensors, and back-
nd servers.

The terminal device provides capacity to run applications
ased on sensor data, and in addition to a cellular network
onnection, has Bluetooth, Wibree and RFID radio interfaces.
ack-end servers are computers providing data storage, data
rocessing and extra services.

To provide for different power usage and price requirements
n various smart sensor applications, we propose two classes
f sensor devices: sensor radio nodes that are wireless battery-
owered smart sensors running sensor server software, and
ireless remote-powered sensors that are passive RFID tags with

sensor.

Bluetooth is an interesting radio technology for mobile-
hone-based sensor solutions, as most phones provide a
luetooth radio. As low-power (e.g., button cell powered) sensor
l device of sensor network.

evices can not bear the cost and power consumption asso-
iated with Bluetooth, we propose here the use of Wibree
formerly known as Bluetooth Low End Extension or BT LEE),
hich is a radio technology specially designed for sensor net-
orks [3,4]. Wibree solves the cost and power use problem
y introducing minor power-saving additions to the Bluetooth
hip. It is relatively cheap to provide stand-alone Wibree chips
or wireless sensors or add the Wibree functionality to Blue-
ooth chips for mobile phones—in contrast to adding another
Fig. 2. Architecture overview.



354 I. Jantunen et al. / Sensors and Actuators A 142 (2008) 352–360

Fig. 3. NanoUDP message format. Prtcl is the protocol and flag byte. Length
i
d
b

o
W

i
o
s
d
f

2

A
s
T
a
v
o
o
n

h
t
s
o
u
t
n
f
d
I
s
n
(

n
A
m

p
n
f

F
i
p

Table 1
SSI v1.2 command set

Cmd Dir Description

Q/q C→ Query for sensor devices
A/a ←S Query reply
C/c C→ Discover sensors on device
N/n ←S Discovery reply
Z/z C→ Reset SSI device
G/g C→ Get configuration data of a sensor
X/x ←S Configuration data response
S/s C→ Set configuration data for a sensor
R/r C→ Request sensor data
V/v ←S Sensor data response
D/d ←S Sensor data response with one byte status field
M/m ←S Sensor data response with many data points
O/o C→ Create sensor observer
Y/y ←S Sensor observer created
K/k C→ Delete sensor observer
L/l ←S Request sensor listener
J/j C→ Sensor listener created
E/e ↔ Error messages
F/f ↔ Free data for custom purposes

A
c
O

2

t
p
a

f
b
t
d
s
d
a
e

s
S
R
s
S
r

s the total length of payload and possible CRC. Src and Dst are source and
estination port numbers, both 0×28 for SSI. CRC checksum is used if requested
y the application.

n the 2.4 GHz frequency band already used by Bluetooth and
ibree.
Plug-in type implementation of sensors is the key to modular-

ty. The Sensor API detects what sensors are available regardless
f their location: directly connected on the terminal, in a sen-
or radio node, or in an RFID tag. The Sensor API on the host
evice keeps a list of available sensors and provides functions
or accessing them.

.1. Local Connectivity Layer

The Local Connectivity Layer provides a Local Connectivity
PI to send and receive messages to and from locally connected

ensors and remote devices over Wibree radio and RFID tags.
o provide low overhead networking, commercial solutions are
vailable. For lightweight sensor applications, loss of an indi-
idual sensor value is often not so important, so traffic control
r message tracking is not needed. To make possible wide use
f the proposed architecture, we have chosen an open source
etworking solution, nanoIP [6].

NanoIP was selected as a networking solution with less over-
ead than TCP/IP has, while also being freely usable, in contrast
o a proprietary protocol, such as ANT by Dynastream [7]. The
mall overhead of 5 bytes is achieved, for instance, by relying
n the MAC (medium access control) layer for addressing. We
se the nanoUDP message type (see Fig. 3), that includes a pro-
ocol byte, 2-byte length of message, source and destination port
umbers and the SSI message as payload. NanoUDP is designed
or situations where an individual message is not critical, and so
oes not provide proof of message receive nor retransmission.
f getting the messages through is considered critical, nanoTCP
hould be used, as it provides flow control and retransmission if
eeded. The price for this, however, is heavier message overhead
9 bytes) and increased network traffic.

The Wibree API provides methods for device discovery, con-
ection setup and data delivery over Wibree radio. The RFID
PI provides methods to identify tags and read or write tag
emory content using an RFID interrogator.

For locally connected sensors (add-on hardware), point-to-

oint wired connections (UART, SPI, I2C) are used instead of
anoIP networking. For such situations, the SSI/UART message
ormat (see Fig. 4) is used.

ig. 4. SSI/UART message format. Start byte indicating beginning of message
s 0×FE. Length and ∼Length are length and bitwise not of length of message
ayload with optional CRC.

t
t
m
i
d

t
s
(
v
“

ll SSI commands are one byte ASCII. If the command is in lower case, a CRC
hecksum (see Figs. 3 and 4) is calculated and attached to the end of the message.
n direction (Dir) column, C and S are client and server.

.2. Sensor Layer

The Sensor Layer provides a sensor client, an RFID sensor
ag reading interface and a Sensor API for upper level or 3rd
arty software. The layer finds and reads both locally connected
nd wireless sensors.

Simple Sensor Interface (SSI) protocol [8] defines a method
or reading sensors regardless their type, location or connection
etween the sensor and the reader. SSI is a client-server archi-
ecture, where sensor devices act as SSI servers and terminal
evices as SSI clients. A single sensor device can have multiple
ensors. Both polling sensors by client terminals and streaming
ata from sensor servers are supported (see Table 1). SSI is an
pplication level protocol that can be used over any network
nvironment.

The command-answer pairs Q-A and C-N handle finding sen-
or devices and information about the sensors available on them.
ensor reading (polling) is done with the command-answer pair
-V (see Fig. 5). In streaming, the sensor device is called “sen-

or observer” and the reading device is “sensor listener”. The
SI client can request a sensor observer and the SSI server can
equest a sensor listener. To speed up data transfer in streaming,
he SSI server can buffer data points to send them in messages of
ype M. The number of data points that can be sent in a single M

essage depends on the communications buffer length, which
n our implementation is 128 bytes, resulting in a limit of 29
ata points, each 4 bytes.

RFID sensor tag is a Mode 1 (passive backscatter RFID sys-
em) tag as defined by the ISO 18000-4 standard. SSI protocol

pecification defines the memory layout of RFID sensor tags
see Table 2). RFID sensor tag reader toggles the sensor acti-
ation bit (byte address 0×3A), waits until the sensor status is
ready” (0×18) and then reads the memory area, where the sen-



I. Jantunen et al. / Sensors and Actuators A 142 (2008) 352–360 355

F are sent. Addr is the device address, one byte, followed by the message type ‘V’ or
‘

s
t

2

l
l
F
o
“
“
d
p
t

a
“
e
w
a

T
S

ig. 5. SSI sensor data response ‘V’ message. All the sensor values requested
v’. After that, the sensors’ values requested with ‘R’ or ‘r’ command follow.

or value is stored (0×12–0×15). After reading the sensor value,
he sensor status bit is cleared by the reader.

.3. Context Layer

The Context Layer abstracts sensor-level data into higher
evel units, so-called “context atoms”. Each atom stores the
atest measurement data, together with semantic information.
or instance, the temperature atom may list the latest value
btained from the sensor, but also the measurement unit (e.g.,
Kelvin”), scale, documentary text about the source (e.g.,
Body temperature”), and a reference to the ontology that
efines the meaning of measurement among thousands of other
ossible interpretations (e.g., “Mimosa/Physiological/Body-
emperature”).

Fig. 6 shows an example of a context atom. This “Location”
tom has been defined by a server whose address is given in the

source” field, for a person known as “username”. Such param-
ters will become useful when tracking changes in the atom, and
hen looking for an ontology that defines the semantics of this

tom. The atom details the time of the latest change. Further

able 2
SI compatible RFID sensor tag memory map

w
c
t
a
d

c
o
l
c
o
o
m
m
i

T
t
b
a
a

b
p
c
i
o

t
b
r
t
r
a

Fig. 6. An example of a context atom.

ork might include separate timestamps for creation, modifi-
ation and access. The “struct” keyword allows for nesting of
he atom’s attributes. In this case, this “Location” atom contains
nd “Airport” structure, that has one defined “Hotspot” with four
evices recognized by their Bluetooth addresses.

Applications can subscribe to the Context Engine to follow
ontext atoms. The Context Layer monitors changes to the value
f those atoms and sends notifications to the applications, both
ocal and remote. Any rules that reference the atom in their
onditions are triggered upon changes. Rules may then trigger
ther rules, create or change context atoms, launch applications
r send messages to users. The Context Layer is imple-
ented as a Symbian application with mechanisms for atom
aintenance, rule processing, simple UIs, and Sensor Layer

nterfaces.
Fig. 7 depicts the key functional blocks of the Context Engine.

he Context Silo is the central data structure that keeps track of
he individual context atoms. It has been modeled after the black-
oard paradigm; that is, the data on the blackboard is visible to
ll interested parties and all those parties may modify the data
nd contribute new data.

The Communication Manager monitors changes to the black-
oard, keeps track of parties that have subscribed to a particular
iece of data, and notifies those parties when the data gets
hanged. In practice, such parties are usually applications resid-
ng on the same phone, or remote applications that get notified
ver CEP (Context Exchange Protocol).

Various reasoning engines can observe the context data on
he blackboard and contribute new data. The Script Engine has
een implemented in Mimosa to allow rule-based reasoning. The

ules (“scripts”) are modeled after the usual IF-THEN produc-
ion system pattern: when atoms on the blackboard changed, the
ules with matching IF parts are triggered and their THEN parts
re carried out. Typically, the rules will trigger new rules. The



356 I. Jantunen et al. / Sensors and Actuators A 142 (2008) 352–360

ngine

o
o

F
t
t

f
c

c
a
t
u
m

2

w
b

s
e
s
I
t

r
g
s
b
I
c
t
o

a
a

Fig. 7. The functional blocks of Context E

peration follows a forward chaining principle, which is typical
f sensor data driven systems, including Mimosa.

The rules have been defined with XML (see example in
ig. 8). The XML tree syntax allows for arbitrary nesting of

he IF and THEN parts, so the scripts are in fact little applets
riggered by the blackboard.

Applications can upload and remove inference scripts using
rom Script Engine using its API. The upload, as notifications,
an happen both with local and remote applications.

As the script language allows input, output, conditional exe-
ution, and user notifications, it can be used to implement simple
pplications. For instance, in Mimosa we built simple scripts
hat monitor the temperature and humidity of a wine cellar, and
pon abnormal conditions sent a text message to the phones of
aintenance staff.

.4. Remote sensing middleware
The Mimosa Remote Sensing Architecture (M-RSA) middle-
are provides sensor data selection, acquisition and delivery to
ack-end servers. The middleware [9] resides at both application

Fig. 8. An example context script.

a

c
t
r
f

and their relations to neighboring layers.

erver and gateway(s), consisting of components for event deliv-
ry, acquisition, query resolution, aggregation, access control,
torage, and registration and availability discovery (see Fig. 9).
n the following, we will outline the functionality of each of
hese components.

The event delivery component provides functions for all
emote communication between an application server and a
ateway. At the application server and gateway, there exist
ubscriber/publisher as well as event server functionality, i.e.,
oth sides subscribe for and provide information to each other.
n order to be independent from a particular transport proto-
ol, the event delivery component provides the functionality
o upper layer components through transport-specific mapping
nto SMS, SIP, HTTP or TCP/IP.

The acquisition component implements local and remote
cquisition of sensor data. On the application server side, the
cquisition component is one of the two components to be
ccessed by the application(s).

The application server pre-processes acquisition requests by
hecking access rights with respect to requested data, verifying

he availability of particular sensors that are required to fulfill the
equest and verifying the availability of a particular aggregation
unctionality, if required. If these verifications return positive,

Fig. 9. Remote sensing middleware components.



d Actu

t
i
s
w
s

(
d
t
c
p
l
t
t
r
i
t

a
r
t
r
a
n
b

p
s
s

a
u
s
r
d

t
d
a
a
a

r
f
t
i

a
w
a
w
m
s
s
g

I. Jantunen et al. / Sensors an

he acquisition request is sent to the appropriate gateway (the
dentifier given by the application). In this way, the application
erver acts as a subscriber for an event at the intermediary gate-
ay, the gateway’s acquisition component acting as an event

erver.
Incoming acquisition requests contain queries for sensor data

or aggregations of sensor data). These queries are based on a
efined abstraction model for the sensor data and its aggrega-
ions. The acquisition query is forwarded to the query resolver
omponent. It is the task of the query resolver component to
arse the request, based on the abstraction model and the query
anguage syntax, determine the sensor data to be acquired by
he acquisition component and determine the aggregation func-
ionality that is required when aggregated data is required. The
esults are delivered back to the acquisition component, which
n turn sets up the local acquisition and aggregation according
o the query.

The aggregation component provides functionality for the
cquisition component to support aggregated sensor data. The
equired aggregation functionality is also determined within
he query resolver component. The acquisition component then
equests the determined aggregation functionality from the
ggregation component. If the query is fulfilled, appropriate
otifications are sent to the application server, triggering call-
acks to notify the application.
During the local acquisition process, the acquisition com-
onent provides the aggregation component with appropriate
ensor data to perform the desired aggregation. If the obtained
ensor data is required for future use in order to perform the

a

a
d

Fig. 10. Architecture i
ators A 142 (2008) 352–360 357

ggregation, it can be stored with the local storage component
ntil the aggregation can be performed. Future extensions fore-
ee downloading appropriate aggregation code for implementing
equested functionality in cases where the required functionality
oes not exist locally.

Enabling controlled access to the sensor data and its aggrega-
ions is of key importance in order to preserve the privacy of the
ata. The access control component implements this function-
lity in the application server. This component is consulted for
n incoming acquisition request in order to verify appropriate
ccess rights for the particular application.

Apart from data acquisition, discovery constitutes another big
ole of the middleware, enabling applications to query not only
or the availability of certain sensors but also aggregation func-
ionality. The registration and availability (R&A) component
mplements the necessary functionality for such discovery.

For this, the application server’s R&A component serves as
central registry for all registered gateways. Gateways register
ith the application server when starting up and publish avail-

ble sensors as well as any available aggregation functionality
ith the R&A component at the application server. For the for-
er, the R&A component in the gateway subscribes to the local

ensor capabilities using the Sensor API (see Section 2.2). After
toring the obtained sensor information locally (for use with
ateway-local applications), the information is published at the

pplication server’s R&A component.

The available information in the R&A component in the
pplication server can either be queried by the application
irectly or by the acquisition component before sending an

mplementation.



3 d Actuators A 142 (2008) 352–360

a
s
t
f
m

3

f
n

(
p
s
s
e

R
n
p
i
i
w
t

a
(
m

m
N
i
b

s
s
M
w
T
“
s
c

s
i
l
l
d
c

d
t
a
w
s
t

F
b
b

l
u
p
T
m
i

R
l
m
f

4

MIMOSA architecture has been successfully demonstrated
in a laboratory environment with a wireless weather station
(see Fig. 12) as an application. The demonstration consists of a
MIMOSA terminal with a user interface application using the
58 I. Jantunen et al. / Sensors an

cquisition request to the intermediary gateway. Apart from a
imple discovery request, the component also provides func-
ionality to subscribe to the availability of sensors or aggregation
unctionality. Hence, applications are notified when such infor-
ation will become available in the future.

. Architecture implementation

The proposed architecture (see Fig. 10) is demonstrated with
our different hardware entities: terminal device, sensor radio
ode, RFID sensor tag, and back-end server.

The Terminal Device is a 3G mobile phone, a Nokia 6630
Series 60), with add-on electronics and software layers to
rovide MIMOSA functionality. The mobile phone runs local
ensor applications, and acts as a gateway between the local sen-
or environment and internet, where remote servers can provide
xtra functionality.

The MIMOSA terminal provides Bluetooth, Wibree and
FID radios for reading sensors. Both Wibree and RFID tech-
ologies use the same analog RF module. Medium access control
rotocols of the systems are implemented on an FPGA included
n the MIMOSA hardware. The Wibree and RFID protocols are
ndependent of each other but the RF resource arbitrator knows
hich one of the systems is using the RF resources and prevents

he other system using them if already allocated.
The connection from phone to MIMOSA hardware is over

n USB to SPI converter (Pop-Port adapter). The MIMOSA SPI
M-SPI) is an SPI bus with extra interrupt lines for local sensor
anagement board, Wibree and RFID systems.
The add-on sensors are interfaced and managed by a sensor

anagement board of the same kind as in the Sensor Radio
ode (see below). The only difference is in networking, which

s done by point-to-point SSI/UART protocol over the M-SPI
us.

The Sensor Radio Node is a wireless battery-powered smart
ensor with Wibree radio, nanoIP networking, and SSI server
oftware. Sensor management (see Fig. 11) is done with a

SP430 microcontroller which runs the SSI server, nanoIP net-
orking, and drivers for sensor and communications hardware.
here is also a real time clock, which can be used as a time
sensor”. The same sensor management board is used in both
ensor radio nodes and terminal devices, the difference being in
ommunications software.

Sensor management board provides a standard connector for
ensor hardware, providing a +3.3 V power supply, and includ-
ng standard UART, SPI and I2C digital interfaces, 8 analog input
ines and 15 configurable general digital input/output lines. The
atter can be used, for example, to implement a non-standard
igital interface to the sensor(s), or provide sensor enable or
lock signals.

RFID Sensor Tag is a wireless remote-powered sensor
esigned for low-cost sensing. The RFID interrogator powers
he tag and writes the number 1 to the corresponding bit of the

ctivation byte address (see Table 2). The sensor control hard-
are then writes the sensor value to its memory and sets the

ensor status bit to ready (1). The sensor value is then read by
he Sensor API of the terminal device.

F
o

ig. 11. Sensor management and interfaces. SEMBO is sensor management
oard, LOCOS is local connectivity board. On a Sensor Radio Node (R), Wibree
oard is used. On a Terminal Device (L), a pop-port adapter is used.

The analog part includes the tag front end (rectifier, voltage
imitation, and backscattering), RFID analog circuitry (demod-
lator, clock, regulation, current and voltage references, and
ower-on reset) and analog sensor interface (sigma delta based).
he digital part includes RFID protocol management, state
achine, sensor interface, and sensor filters. A standalone capac-

tive sensor is used.
As a back-end server, a laptop computer with MIMOSA

emote Sensing Architecture (M-RSA) middleware in another
ocation was used to read sensor data over the network. The ter-

inal device acts here as the link that forwards sensor readings
rom the sensors to the computer.

. Results and discussion
ig. 12. Wireless weather station. Wibree board on the left, connectivity board
n the bottom, sensor management board on right with sensor board on top.



I. Jantunen et al. / Sensors and Actu

F
s

S
t
R
m
i

c
c
c
s
S
s
t
b

d
(
w

F
t

(
f
p

i
S
1
a
s

s
m
c

5

m
i
m
a
p
s
w
t
b
c
v

p
l

A

ig. 13. Screen capture from MIMOSA terminal reading the wireless weather
tation.

ensor API to read the environmental sensor values (tempera-
ure, pressure and humidity) over Wibree radio. The MIMOSA
emote Sensing Architecture (M-RSA) application on the ter-
inal forwards selected values over the 3G cellular network and

nternet to a laptop computer acting as a back-end server.
The wireless weather station consists of a Wibree board, a

onnectivity board with an FPGA running the medium access
ontrol protocols, a sensor management board with a micro-
ontroller running device drivers and an SSI server, and a
ensor board with Intersema MS5534 pressure/temperature and
ensirion SHT11 humidity/dew point/temperature sensors. The
ensors use custom digital interfaces to conserve energy, thus
he general digital input/output pins of the sensor management
oard are used.
The demonstration included searching for sensor devices,
iscovery of sensors in a found device and reading the sensors
polling and streaming) with a mobile phone (see Fig. 13), along
ith forwarding the selected sensor values to the back-up server

ig. 14. Screen capture from back-end server reading temperature values from
he wireless weather station via a MIMOSA terminal.

t
R
n
R
R

R

[

[

[
[

[
[

[

[

ators A 142 (2008) 352–360 359

see Fig. 14). The RFID sensor tag was demonstrated success-
ully by reading the sensor value from the tag memory using the
roposed architecture.

To demonstrate streaming sensor data with the reference
mplementation the speed of sending and receiving data with
SI messages over nanoIP and Wibree could be raised to about
25 samples/s without losing data packages. The sample rate was
chieved by streaming ‘M’ type SSI messages with 28 buffered
amples each (one message every 215 ms).

If successful transmission and reception of individual mes-
ages is considered to be critical for a given solution, nanoUDP
essaging can be replaced by nanoTCP, which provides flow

ontrol and retransmission.

. Conclusions

MIMOSA architecture is a smart sensor architecture opti-
ized for flexibility and low-power use. The key entities

ncluded in the architecture are terminal devices which are
obile phones with add-on electronics to provide extra function-

lity, active sensor radio nodes with their own power sources,
assive RFID sensor tags which are powered by the reading
ignal, and back-end servers. Terminal device provides, along
ith the capability to run sensor applications, internet connec-

ion and acts as a link between the sensors in the vicinity to
ack-end servers via cellular network and internet. The sensors
an be either directly attached to the terminal device, or linked
ia an RFID or Wibree connection.

The proposed architecture offers an open architecture
latform for implementing mobile-phone-centric ambient intel-
igence in various application areas.

cknowledgements

This study is part of the MIMOSA project under EU FP6 con-
ract IST-2002-507045. The French CEA-LETI has provided the
FID Sensor Tag and the RFID interrogator logic blocks run-
ing in the FPGA of the local connectivity board. VTT Technical
esearch Centre of Finland has provided the RF block for the
F module.

eferences

1] C.-Y. Chong, S.P. Kumar, Sensor networks: evolution, opportunities, and
challenges, Proc. IEEE 91 (2003) 1247–1256.

2] A.K. Dey, Understanding and using context, Pers. Ubiquitous Comput. 5
(2001) 4–7.

3] Wibree, 2006, http://www.wibree.com.
4] M. Honkanen, A. Lappetelainen, K. Kivekäs, Low end extension for blue-

tooth, in: IEEE Radio and Wireless Conference 2004, Atlanta, GA, USA,
September 19–22, 2004, pp. 199–202.

5] ZigBee, 2006, http://www.zigbee.org.
6] Z. Shelby, P. Mahonen, J. Riihijärvi, O. Raivio, P. Huuskonen, NanoIP:
the zen of embedded networking, in: IEEE International Conference on
Communications 2003, May 11–15, 2003, vol. 2, pp. 1218–1222.

7] This is ANT, a Wireless Personal Area Network solution, 2006,
http://www.thisisant.com.

8] SSI protocol, 2006, http://ssi-protocol.net.

http://www.wibree.com/
http://www.zigbee.org/
http://www.thisisant.com/
http://ssi-protocol.net/


3 d Actu

[

B

I
d
H
a

H
d
o
f
n

P
F
i
p

h
s

D
c
t
T
o

V
1
h
(
P
G
f
S
and their technical applications, nonlinear effects in solid state and acoustical
60 I. Jantunen et al. / Sensors an

9] D. Trossen, D. Pavel, Building a ubiquitous platform for remote sensing
using smartphones, in: The Second Annual International Conference on
Mobile and Ubiquitous Systems: Networking and Services 2005, San Diego,
CA, USA, July 17–21, 2005, pp. 485–489.

iographies

iro Jantunen was born in 1973 in Helsinki, Finland. He received his MSc
egree in engineering physics from Helsinki University of Technology in 2001.
e joined Nokia Research Center in 2004 and focuses on research topics in the

rea of sensor networks.

annu Laine was born in 1973 in Järvenpää, Finland. He received his MSc
egree in Systems and operations research from Helsinki University of Technol-
gy in 1999, and thereafter he has been working with the Nokia Research Center
ocusing on research topics on the area of wireless short-range communications
etworks.
ertti Huuskonen is principal scientist with Nokia Research Center, Tampere,
inland. His research interests include context awareness, ubiquitous comput-

ng, and mobile interaction. He has been applying artificial intelligence in his
revious positions at VTT and CERN on such diverse fields as industrial control,

n
b
m
a

ators A 142 (2008) 352–360

igh-energy physics and telecommunication. He holds a doctorate in computer
cience from University of Oulu, Finland, 1997. He lives on cheese.

irk Trossen has been with Nokia Research since 2000, working in areas of
ontext-aware and adaptive service architectures, wireless sensing and long-
erm evolution of Internet architecture. Dirk holds a PhD from the University of
echnology in Aachen, Germany from 2000 and a MSc from the same university,
btained in 1996.

ladimir Ermolov graduated with honors in 1981 and received the PhD in
986 from the Moscow Engineering Physics University (MEPhI). Since 1981,
e had been as senior research associate with the laboratory of Dielectric Devices
MEPhI). He worked many times as visiting researcher in the Department of
hysics, Helsinki University and Fraunhofer Institute of Nondestructive testing,
ermany. During his professional career he has worked in areas of sensors

or measurements of ocean parameters, acoustic devices for signal processing,
AW devices, variable acoustic devices, acoustic effects in magnetic materials
ondestructive evaluation. He joined Nokia research center at 1998 where he has
een leading several projects in areas of MEMS, Ambient Intelligence and mass
emory technologies. He is the author and co-author of 56 scientific publications

nd the holder and co-holder of 24 patents.


	Smart sensor architecture for mobile-terminal-centric ambient intelligence
	Introduction
	MIMOSA architecture
	Local Connectivity Layer
	Sensor Layer
	Context Layer
	Remote sensing middleware

	Architecture implementation
	Results and discussion
	Conclusions
	Acknowledgements
	References


